

This story appeared in Network World Magazine

How to solve Windows 7 crashes in minutes
By Dirk A. D. Smith, Network World
April 18, 2011 12:03 AM ET

Everything is perfect; you've upgraded to Windows 7. It's fully patched, all drivers are updated,
security is tight, maybe you even have new hardware...yet the old Blue Screen of Death (BSOD)
taunts you from your new high definition-screen.

The good news is that you can quickly solve the problem in most cases by using the Windows
debugger tool. It's simple and free.

Back in the Window XP era (2005), we wrote a tutorial on solving Windows crashes (How to
solve Windows system crashes in minutes). This is an updated version that will make you the
master of system crash resolution in your home or office.

Is crash resolution different for different versions of Windows?

The same approach to resolve system crashes applies to the many variants of Windows, says
Andre Vachon, principal development lead at Microsoft. "The latest releases of Microsoft
Windows use the same operating system kernel, the same primary interfaces, drivers work on
both server and client, and the debugger uses the same debug files. Further, we used the same
code base and source tree to compile both 32- and 64-bit versions."

With that in mind and for simplicity I will refer to Windows 7. However, not only will the
information apply to other current releases, much of it will apply to legacy versions back to
Windows 2000.

Why Windows 7 crashes

Windows became more stable as it matured. And, while the operating system has gone from 16-
bit to 32-bit and now 64-bit, the features have become more extravagant, and the footprint much
larger - it is actually harder to bring down.

Still, it does fall over. However, the reasons for such system failures have not changed from the
XP days.

https://www.networkworld.com/article/2320271/how-to-solve-windows-system-crashes-in-minutes.html
https://www.networkworld.com/article/2320271/how-to-solve-windows-system-crashes-in-minutes.html

Windows takes advantage of a protection mechanism that lets multiple applications run at the
same time without stepping all over each other. Known now as User Mode and Kernel Mode, it
was originally known as the Ring Protection scheme.

Kernel Mode

Kernel Mode (Ring 0) software has complete and unfettered access to the hardware. Software
operating here is normally the most trusted because it can execute any instruction and reference
any address in the system. Crashes in Kernel Mode are complete system failures requiring a
reboot. This is where you find the operating system kernel code and most drivers.

User Mode

User Mode (Ring 3) software cannot directly access the hardware or reference any address
freely. It must pass instructions - perhaps more accurately requests - through calls to APIs. This
feature enables protection for the overall operation of the system, regardless of whether an
application makes an erroneous call or accesses an inappropriate address. Crashes in User Mode
are generally recoverable, requiring a restart of the application but not the entire system. This is
where you find most of the code running on your computer ranging from Word to Solitaire and
some drivers.

So with much of the software running in User Mode these days, there is simply less opportunity
for applications to corrupt system-level software and, for that matter, each other. However,
kernel-mode software is not protected from other kernel-mode software. For example, if a video
driver erroneously accesses a portion of memory assigned to another program (or memory not
marked as accessible to drivers) Windows will stop the entire system. This is known as a Bug
Check and the familiar Blue Screen of Death is displayed.

Crash causes by the numbers

While the numbers vary, they do not vary much. When combining data reported from several
sources including my own 20 years dealing with crash prevention and resolution, a trend
becomes clear; about 70% of Windows system crashes are caused by third party drivers
operating in Kernel Mode, 15% is unknown, 10% is from faulty hardware (more than half from
bad memory) and only about 5% from faulty Microsoft code.

An important point that is not well known is that most crashes are repeat crashes. This is so
because most admins are not able to resolve system crashes immediately. As a result those
crashes tend, unfortunately, to occur again...and again. More often than not, these events recur
over weeks and in many cases over months before being resolved. By using the information in
this article to solve crashes when they first occur, you will prevent many subsequent crashes.

Getting Started: System Requirements

To prepare to solve Windows 7 system crashes using WinDbg you will need a PC with the
following:

• 32-bit or 64-bit Windows 7/Vista/XP or Windows Server 2008/2003

• Approximately 25MB of hard disk space (this does not include storage for dump files or for
symbol files)

• Live Internet connection

• Microsoft Internet Explorer 5.0 or later

• The latest version of WinDbg comes as an option in the Windows SDK. The SDK download
file is called winsdk_web.exe, is 498KB in size, and can be downloaded for free. (Note that after
installing the debugger you can delete the large download file thus freeing up lots of space.)

• A memory dump (the page file must be on C: for Windows to save the memory dump file)

Install WinDbg

After downloading the Windows SDK and running the Setup wizard, select the Debugging
Tools for Windows option under Common Utilities.

Configure Startup and Recovery

This is annoying. Someone made it very non-intuitive to locate the dialogue box needed to check
that your system is set to take the appropriate actions during a BugCheck, including whether to
automatically restart and what size dump files to save.

Find the Startup and Recovery dialog box:

1. Select the Start button at the bottom left of your
screen

2. Select Control Panel

3. Select System and Security

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

4. From the options in the right column, select System

5. From the left column select Advanced system settings
to display the System Properties box

6. In the System Properties box select the Advanced tab

7. In the Startup and Recovery area select the Settings
button

See the Startup and Recovery dialog box below:

Ensure Startup and Recovery settings are correct

Under System failure

1. Check Write an event to the system log

2. Check Automatically restart

3. Select Kernel memory dump

4. Ensure dump file to be written to %SystemRoot%\MEMORY.DMP

5. Check Overwrite any existing file to save hard drive space

Note that this will mean that your system will save both a kernel dump file and a minidump file.
However, while you will have a minidump for every event, only the last kernel dump will be
saved.

Configure WinDbg

Launching the debugger: To launch WinDbg select the following:

Start | All Programs | Debugging Tools for Windows| WinDbg

If you are going to use it with any frequency, simplify launching the program by pinning it to the
Startup menu or send a shortcut to the desktop.

What's the big deal about symbols?

Before you jump in to save the day by finding the miscreant module in a dump file you have to
be sure the debugger is ready. Most importantly you have to be sure it will locate the symbol
files for the precise version of the operating system that you are troubleshooting.

Symbol tables are a byproduct of compilation. When a program is compiled, the source code is
translated from a high-level language into machine code. At the same time, the compiler creates
a symbol file with a list of identifiers, their locations in the program, and their attributes. Some
identifiers are global and local variables, and function calls. A program doesn't require this
information to execute. Therefore, it can be taken out and stored in another file, reducing the size
of the final executable.

Smaller executables take up less disk space and load into memory faster than large ones. But
there is a flip side: When a program causes a problem, the operating system knows only the hex
address at which the problem occurred. You need something more than that to determine which
program was using that memory space and what it was trying to do. Windows symbol tables hold
the answer and having access to symbols specific to your system's memory is like putting place
names on a map. Conversely, analyzing a dump file with the wrong symbol tables would be like
finding your way through San Francisco with a map of Boston.

Configure WinDbg to locate symbols

There are an amazing number of symbol table files for Windows. This is so because every build
of the operating system, even one-off variants, results in a new file. Fortunately, WinDbg can
handle it for you but you must configure it with the correct search path. To do this, launch
WinDbg and select the following:

File | Symbol file path

Then enter the following path: (Make sure that your firewall allows access to
msdl.microsoft.com)

srv*c:\cache*http://msdl.microsoft.com/download/symbols

Note that the address between the asterisks is where you want the symbols stored for future
reference. For example, I store the symbols in a folder called symbols at the root of my c: drive,
thus:

srv*c:\symbols*http://msdl.microsoft.com/download/symbols

When opening a memory dump, WinDbg will look at the executable files (.exe, .dll, etc.) and
extract version information. It then creates a request to the symbol server at Microsoft, which
includes this version information and locates the precise symbol tables to draw information from.
It won't download all symbols for the specific operating system you are troubleshooting; it will
download what it needs. Alternatively, you can opt to download and store the complete symbol
file from Microsoft. This, however, will run from about 600MB to near 800MB for each version
of the operating system you analyze. In contrast WinDbg downloaded less than 100MB to
analyze several versions of the operating system on my test machine. Even with the low cost of
hard drives these days, the space savings is significant.

About dump files

A memory dump file is a snapshot of what the system had in memory when it crashed. Though
perhaps the least attractive and correspondingly least intuitive thing you are likely ever to look
at, it is your best friend when the operating system falls over. Windows creates three different
sizes of memory dumps; minidumps, kernel dumps, and full dumps.

1. Small or minidump

Windows 7 minidumps are 256K-bytes, which is tiny by any standard, however they have grown
from the Windows 2000/XP days when they were only 64K. One of the reasons they are so small
is that they do not contain any of the binary or executable files that were in memory at the time
of the failure. However, those files are critically important for subsequent analysis by the
debugger. As long as you are debugging on the machine that created the dump file WinDbg can
find them in the System Root folders (unless the binaries were changed by a system update after
the dump file was created). Alternatively the debugger should be able to locate them through
SymServ. Properly configured, Windows 7 creates and saves a minidump for every crash event
as well as a kernel dump (described below).

2. Kernel dump

Kernel dumps are roughly equal in size to the RAM occupied by the Windows 7's kernel. On my
notebook a kernel dump runs about 344MB and compressed it is just over 100MB. One
advantage to a kernel dump is that it contains the binaries. As a default I would always have the
system save the latest kernel dump. Remember that while saving it, the system will also save a
minidump.

3. Complete or full dump

A full memory dump is about equal to the amount of installed RAM. With many systems having
multiple GBs, this can quickly become a storage issue, especially if you are having more than the
occasional crash. Normally I do not advise saving a full memory dump because they take so
much space and are generally unneeded. However, Microsoft's Vachon advises that "if you are
trying to debug a very complex problem, such as an RPC issue between multiple services in the
box and you want to see what the services are doing in User Mode, the full memory dump can be
very helpful." Therefore, stick to the kernel dump but be prepared to switch the setting to
generate a full dump on occasion.

What if you do not have a memory dump to work with?

If you do not have a memory dump to look at, do not worry, you can make it crash! The simplest
way (without having to change Registry settings) is to run a cool tool called NotMyFault (thank
you Mark Russinovich and the team at SysInternals.) It provides a selection of options to load a
misbehaving driver (which requires administrative privileges).

But remember...it WILL CREATE A SYSTEM CRASH! So prepare your system and be sure to
let anyone who needs access to the system to log off for a few minutes. Save any files that
contain information you might otherwise lose and close applications. If you have configured
your system as described above, it should work fine. The machine should go down, reboot, and
you will have both a minidump as well as a kernel dump to look at. I've used it plenty of times
and had no problems.

Download NotMyFault and force a system crash

1. Download the NotMyFault tool from the following Microsoft Web
site and extract the files to a folder:
http://download.sysinternals.com/Files/Notmyfault.zip

2. Right-click on NotMyFault.exe or at the Command Prompt type
NotMyFault. If you get the message "You don't have permission to
open this file" then try again but when right-clicking select
"Run as Administrator".

3. From the menu select "High IRQL fault (kernelmode)" and the
Do Bug button. This will generate a memory dump file and a "Stop
D1" error.

4. Sit back...your system will be back in momentarily and you
will have both a minidump and kernel dump to view.

Load a dump file

If you get the message "You don't have permission to open this file", re-launch WinDbg by right-
clicking on it and selecting Run as administrator.

Once the debugger is running, select the menu option File | Open crash dump and point it to
open the memory dump you want to analyze. When offered to Save information for workspace
select Yes if you want it to remember where the dump file is.

WinDbg looks for the Windows symbol files for that precise build of Windows. It references the
symbol file path, accesses microsoft.com, and displays the results.

NOTE: If the debugger seems busy, it is probably the first time a dump file for a specific
machine has been opened, therefore, WinDbg is downloading symbols from SymServ. The next
time a dump is opened for the same machine the debugger will likely seem much faster since the
symbol files will be available locally.

A Command window will appear. This is where the crash analysis will be displayed. At the
lower left will be a KD> prompt. To the right of the prompt is a single-line window where you
will enter commands.

Possible error messages

If you get the message

*** ERROR: Symbol file could not be found. Defaulted to export
symbols for ntoskrnl.exe -

one of the following three things is usually wrong:

• Your path is incorrect; check to make sure there are no typos or other errors (such as a blank
white space) in the symbol file path you entered earlier

• Your connection failed; check your Internet connection to make sure it is working properly

• Your firewall blocked access to the symbol files or the symbol files were damaged during
retrieval

If your path and connection are solid, then it's likely that the problem is your firewall. If a
firewall initially blocks WinDbg from downloading a symbol table, it can result in a corrupted
symbol file. If unblocking the firewall and attempting to download the symbol file again does not
work; the symbol file remains damaged. The quickest fix is to close WinDbg, delete the symbols
folder (which you most likely set at c:\symbols), and unblock the firewall. Now, reopen WinDbg
and a dump file. The debugger will recreate the folder and re-download the symbols.

If you see this message,

***** Kernel symbols are WRONG. Please fix symbols to do
analysis.

then WinDbg was unable to retrieve the proper symbols and it will resort to using the default
symbol table. But as the warning suggests, it cannot produce accurate results. Remember that
symbol tables are generated when programs are compiled, so there is a symbol table file for
every Windows version, patch, hot fix, and so on. Go back up to the section above and ensure
you have the right path set, the connection is good, and it is not blocked.

Look through WinDbg's output. You may see an error message similar to the following that
indicates it could not locate information myfault.sys:

Unable to load image
\??\C:\Windows\system32\drivers\myfault.sys, Win32 error 0n2

*** WARNING: Unable to verify timestamp for myfault.sys

*** ERROR: Module load completed but symbols could not be loaded
for myfault.sys

This means that the debugger was looking for information on myfault.sys. However, since it is
like a third-party driver (OK, it is made by Microsoft but it is certainly not a regular Microsoft
product) there are no symbols for it (Microsoft does not store all of the third-party drivers). You
can ignore this error message. Vendors do not typically ship drivers with symbol files, and they
aren't necessary to your work; you can pinpoint the problem driver without them.

When you have WinDbg open a dump file, it automatically runs a basic analysis. Without even
giving the debugger any direct commands (other than to open a specific dump file) it has named
a suspect as shown in the screen below.

Commands

There are hundreds of commands to control WinDbg; it is a very capable tool. Fortunately...we
only need one. To get fancy, we'll use two more, bringing the total to three. They are !analyze -v,
lmv, and lmvm. If you want to sound like this is not the first time you've used a debugger, here is
how you pronounce the first command: "bang analyze dash vee".

!analyze -v

Type !analyze -v on the command line at the bottom of the Command window (note the space
between the command and the "-v"). The "v" or verbose switch tells WinDbg that you want all
the details. The explanation it gives is a combination of English and programmer-speak, but it is
nonetheless a great start. In fact, in many cases you may not need to go any further. If you
recognize the cause of the crash, you're probably done.

Here's an example for the analysis of our crash using the NotmyFault driver.

An important feature of the debugger’s output using !analyze –v is the stack text. Whenever
looking at a dump file always look at the far right end of the stack for any third party drivers. In
this case we see myfault. Note that the chronologic sequence of events goes from the bottom to
the top; as each new task is performed by the system it shows up at the top, pushing the previous
actions down. In this rather short stack you can see that myfault was active, then a page fault
occurred, and the system declared a BugCheck which is when the system stopped (Blue
Screened). Note that some data was removed to fit this exhibit on a page as indicated by the
"truncated" comments).

Analysis with lmv

The next step is to confirm the suspect's existence and find any details about him. Typing lm in
the command line displays the loaded modules; v instructs the debugger to output in verbose
(detail) mode, showing all known details for the modules.

Don't worry if, after running the command lmv, you see the message *BUSY*in the bottom left
of WinDbg's interface. This is because it is gathering detailed information for modules loaded
when the system failed and it may take a couple of minutes. When done you will see kd> back
where BUSY was.

This is a lot of information. Locating the driver of interest can take a while, so simplify the
process by selecting

Edit | Find

and enter the suspect driver, in this case myfault. The amount of information you see depends
upon the driver vendor. Some vendors put little information in their files; others such as
Microsoft tend to be thorough.

Analysis with lmvm

A great way to get right to a specific module is the lmvm command. In this case, enter lmvm
myfault and the debugger will only return data specific to that module.

After you find the vendor's name, go to its Web site and check for updates, knowledge base
articles, and other supporting information. If such items do not exist or do not resolve the
problem, contact them. They may ask you to send along the debugging information (it is easy to
copy the output from the debugger into an e-mail message or Word document) or they may ask
you to send them the memory dump (zip it up first, both to compress it and protect data
integrity).

The other third

Fortunately, in about two out of three cases you'll know the cause as soon as you open a dump
file. But sometimes the information it provides is misleading or insufficient. What do you do
then?

Sometimes it is the hardware

If you have recurring crashes but no clear or consistent reason, it may be a memory problem.
Download the free test tool, Memtest86. This simple diagnostic tool is quick and works great.
Many people discount the possibility of a memory problem, because they account for such a
small percentage of system crashes. However, they are often the cause that keeps you guessing
the longest.

Is Windows the culprit?

Sorry...this is NOT likely! As surprising as it may seem, the operating system is rarely at fault. If
ntoskrnl.exe (Windows core) or win32.sys (the driver that is most responsible for the "GUI"
layer on Windows) is named as the culprit, and they often are, don't be too quick to accept it. It is
far more likely that some errant third-party device driver called upon a Windows component to
perform an operation and passed a bad instruction, such as telling it to write to non-existent
memory. So, while the operating system certainly can err, exhaust all other possibilities before
you blame Microsoft.

Wrong driver named

http://www.memtest86.com/

Often you will see an antivirus driver named as the cause. For instance, after using !analyze -v,
the debugger reports a driver for your antivirus program at the line "IMAGE_NAME". This may
well be the case, but bear in mind that such a driver can be named more often than it is guilty.
Here's why: For antivirus code to work it must watch all file openings and closings. To
accomplish this, the code sits at a low layer in the operating system and is constantly working. In
fact, it is so busy it will often be on the stack of function calls that was active when the crash
occurred, even if it did not cause it. Because any third-party driver on that stack immediately
becomes suspect, it will often get named. From a mathematical standpoint it is easy to see how it
will so often be on the stack whether it actually caused a problem or not.

Missing vendor information?

Some driver vendors don't take the time to include sufficient information with their modules. So
if lmv doesn't help, try looking at the subdirectories on the image path (if there is one). Often one
of them will be the vendor name or a contraction of it. Another option is to search Google. Type
in the driver name and/or folder name. You'll probably find the vendor as well as others who
have posted information regarding the driver.

Summary

Now that you have taken the time to prepare for the next BSOD, remember that in most cases
you will be able to open the dump file and know the cause in less than one minute. To nail the
cause of two out of three critical failures that fast and that easily is gratifying - especially to your
users.

Smith is a freelance consultant and writer in IT. He can be reached at
Dirk@LandfallResearch.com.

Read more about software in Network World's Software section.

All contents copyright 1995-2011 Network World, Inc. http://www.networkworld.com

mailto:Dirk@LandfallResearch.com
http://www.networkworld.com/topics/software.html
http://www.networkworld.com/

	How to solve Windows 7 crashes in minutes
	Is crash resolution different for different versions of Windows?
	Why Windows 7 crashes
	Crash causes by the numbers
	Getting Started: System Requirements
	What's the big deal about symbols?
	Configure WinDbg to locate symbols
	About dump files
	What if you do not have a memory dump to work with?
	Possible error messages
	Commands
	Analysis with lmv
	Analysis with lmvm
	The other third
	Summary

